
LLNL-CONF-457414

A Scalable Data-Privatization Threading
Algorithm for Hybrid MPI/OpenMP
Parallelization of Molecular Dynamics

M. Kunaseth, D. F. Richards, J. N Glosli, R. K.
Kalia, A. Nakano, P. Vashishta

September 28, 2010

IEEE International Parallel & Distributed Processing
Symposium
Anchorage, AK, United States
May 16, 2011 through May 20, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Scalable Data-Privatization Threading Algorithm
for Hybrid MPI/OpenMP Parallelization of Molecular Dynamics

Manaschai Kunaseth1, David F. Richards2, James N. Glosli2,
Rajiv K. Kalia1, Aiichiro Nakano1, Priya Vashishta1

1Department of Computer Science, Department of Physics, Department of Material Science
University of Southern California, Los Angeles, CA 90089-0242, USA

(kunaseth, rkalia, anakano, priyav)@usc.edu

2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
(richards12, glosli)@llnl.gov

Abstract—Calculation of the Coulomb potential in the
molecular dynamics code ddcMD has been parallelized based
on a hybrid MPI/OpenMP scheme. The explicit pair kernel of
the particle-particle/particle-mesh algorithm is multi-threaded
using OpenMP, while communication between multicore nodes
is handled by MPI. We have designed a scalable data-
privatization scheduling algorithm based on mutually exclusive
workload partitioning, which combines: 1) fine-grain dynamic
load balancing based on a greedy approach; and 2) minimal
memory-footprint data privatization via memory locality-
aware computation assignment. This algorithm reduces the
memory requirement for thread-private data from O(NP) to
O(N+P1/3N2/3)—amounting to 75% memory saving for 16
threads, while maintaining the average thread-level load-
imbalance less than 5%. Strong-scaling speedup for the kernel
is 14.43 with 16-way threading on a four quad-core AMD
Opteron node.

Keywords—Hybrid MPI/OpenMP Parallelization; Thread
Scheduling; Memory Optimization; Load Balancing; Parallel
Molecular Dynamics

I. INTRODUCTION
Molecular dynamics (MD) simulation is widely used to

study material properties at the atomistic level. Large-scale
MD simulations are beginning to address broad problems
[1-6], but increasingly large computing power is needed to
encompass even larger spatiotemporal scales. For example,
Glosli et al. performed a massively parallel MD simulation
involving 62 billion particles using the MD code ddcMD,
which demonstrated excellent performance and scalability
[7].

Due to shifting trends in computer architecture,
improvements in computing power are now gained using
multicore architectures instead of increased clock speed.
Furthermore, the number of cores per chip is expected to
continue to grow. As a consequence, the performance of
traditional parallel applications which are solely based on
the message passing interface (MPI), is expected to degrade

substantially [8]. Hierarchical parallelization frameworks,
which integrate several parallel methods to provide different
levels of parallelism, have been proposed as a solution to
this scalability problem on multicore platforms [5, 9, 10].

Two-level parallelization based on a hybrid
MPI/threading scheme is anticipated to replace traditional
MPI-only parallel MD. However, efficiently integrating a
multi-threading framework into an existing MPI-only code
is difficult for several reasons: 1) the highly overlapped
memory layout in typical MD codes incurs serious thread-
write contentions; 2) naïve threading algorithms for MD
usually create significant overhead, thereby limiting the
threading speedup for a large number of threads; and 3)
dynamic nature of MD requires low-overhead dynamic load
balancing for threads to maintain good performance [11].

To address these issues, we have designed a scalable
data-privatization threading algorithm based on mutually
exclusive workload partitioning, which combines: 1) fine-
grain dynamic load balancing based on a greedy approach;
and 2) minimal memory-footprint data privatization via
memory locality-aware computation assignment. We have
implemented this algorithm in ddcMD and demonstrated
that the hybrid MPI/threading scheme outperforms MPI-
only scheme in terms of the strong scaling of large-scale
problems.

This paper is organized as follows. Section II summarizes
the hierarchy of parallel operations in ddcMD. Section III
describes the methodology and theoretical analysis of the
data-privatization scheduler that combines two optimization
techniques: Greedy load balancing and memory locality-
aware work allocation. Section IV evaluates the
performance of the hybrid parallelization algorithm against
that of the traditional MPI-only parallel algorithm.
Conclusions are drawn in section V.

II. DOMAIN DECOMPOSITION MOLECULAR DYNAMICS
Molecular dynamics simulation follows the phase-space

trajectories of an N-particle system where the forces
between particles are given by the gradient of a potential
energy function φ(r1, r2, …, rN). Positions and velocities of
all particles are updated at each MD step by numerically
integrating coupled ordinary differential equations. The
dominant computation of most MD simulations is the
evaluation of the potential energy function and associated
forces. The computational intensity varies greatly (102 –
106 floating point operations per particle) with the physical
model.
 One model of great physical importance is the interaction
between a collection of point charges. This interaction is a
Coulomb field (1/r) which is long range and pair-wise,
requiring O(N2) operations to evaluate. Simulations with
potential evaluations requiring O(N2) operations per MD
step are intractable for all but the smallest systems.
However various methods exist to reduce the computational
complexity. A common approach used by methods such as
particle-particle/particle-mesh [12], particle mesh Ewald
[13] and fast Fourier Poisson [14], is to decompose the
Coulomb potential into two parts: A short-range explicit
pair part that converges quickly in real space and a long-
range part that converges quickly in reciprocal space. The
computational split of work between the short-range and
long-range part is controllable though a “screening
parameter”, which we call α. With the appropriate choice of
α, computational complexity for these methods can be
reduced to O(NlogN).

In this paper we explore parallelization of the short-
range part of the Coulomb potential using OpenMP
threading. The short-range part is a sum over pairs with the
form:

€

φ = qiq j
erfc αrij()

riji< j
∑

,
 (1)

where qi is the charge of particle i and rij is the separation
between particles i and j. Though this work is focused on
this pair function, much of the work can be readily applied
to other pair functions. In addition to this intranode
parallelization, the ddcMD code is already parallelized
across nodes using a particle-based domain decomposition
implemented using MPI. Combining the existing MPI-based
decomposition with the new intranode parallelization yields
a hybrid MPI/OpenMP parallel code.

A. Internode Operations
In typical parallel MD codes the first level of parallelism

is obtained by decomposing the simulation volume into
domains each of which is assigned to a compute core (i.e.,
an MPI task). Because particles near domain boundaries
interact with particles in nearby domains, internode
communication is required to exchange remote particle data

between domains. The surface to volume ratio of the
domains and the choice of potential sets the balance of
communication to computation.

The domain-decomposition strategy in ddcMD allows
arbitrarily shaped domains that may even overlap spatially.
Also, remote particle communication between nonadjacent
domains is possible when the interaction length exceeds the
domain size. A domain is defined only by the position of its
center and the collection of particles that it “owns.” Particles
are initially assigned to the closest domain center, creating a
set of domains that approximates a Voronoi tessellation.
The choice of the domain centers will control the shape of
this tessellation and hence the surface to volume ratio for
each domain. The commonly used rectilinear domain
decomposition employed by many parallel codes is clearly
not optimal from this perspective. The best surface to
volume ratio in a homogeneous system is achieved if
domain centers form a bcc, fcc, or hcp lattice, which are
common high-density packing arrangements of atomic
crystals.

In addition to setting the communication cost, the
domain decomposition can also control load imbalance.
Because the domain centers in ddcMD are not required to
form a lattice, simulations with a non-uniform spatial
distribution of particles (e.g., voids or cracks) can be load
balanced by an appropriate non-uniform arrangement of
domain centers. The flexible domain strategy of ddcMD
allows for the migration of the particles between domains by
shifting the domain centers. As any change in their positions
affects both load balance and the overall ratio of
computation to communication, shifting domain centers is a
convenient way to optimize the overall efficiency of the
simulation. Given an appropriate metric (such as overall
time spent in MPI barriers) the domains can be shifted “on-
the-fly” in order to maximize efficiency [15].

B. Intranode Operations
Once particles are assigned to domains and remote

particles are communicated, the force calculation can begin.
Figure 1 shows a schematic of the linked-list cell method
used by ddcMD to compute pair interactions in O(N) time.
In this method, each simulation domain is divided into small
cubic cells, and a linked-list data structure is used to
organize particle data (e.g., coordinates, velocities, type, and
charge) in each cell. By traversing the linked list, one
retrieves the information of all particles belonging to a cell,
and thereby computes interparticle interactions. The
dimension of the cells is determined by the cutoff length of
the pair interaction, Rc.

The linked-list traversal introduces a highly irregular
memory-access pattern, resulting in performance
degradation. To alleviate this problem, we reorder the
particles within each node at the beginning of every MD
step so that the particles within the same cell are arranged
contiguously in memory when the computation kernel is
called. In our computing environment the benefit of the

regular memory access far outweighs the cost of particle
ordering.

Figure 1. 2D schematic of the linked-list cell method for a pair
computation with the cell dimension Rc. Only forces exerted by particles
within the cutoff radius (represented by a two-headed arrow) are computed
for particle i.

The computation within each node is described as
follows. Let Lx, Ly, and Lz be the numbers of cells in the x, y,
and z directions, respectively, and {Ck | 0 ≤ k < LxLyLz} be
the set of cells within each domain. The computation within
each node is divided into a collection of small chunks of
work called a computation unit λ. A single computation unit
λk corresponding to cell Ck is defined as a collection of pair-
wise computations (see Fig. 2):

€

λk = ri ,r j() ri ∈ Ck;r j ∈ nn
+ Ck(){ } ,

 (2)

where nn+(Ck) is a set of half the nearest-neighbor cells of
Ck. Due to Newton’s third law, forces on a pair of particles
are equal and opposite in direction. This allows us to halve
the number of force evaluations and use nn+(Ck) instead of
the full set of nearest-neighbor cells, nn(Ck). The pairs in all
computation units are unique, and thus the computation
units are mutually exclusive:

€

λk =∅
0≤k<LxLyLz

.

(3)

The set of all computation units on each node is denoted as
Λ = {λk | 0 ≤ k < LxLyLz}. Hereafter, N denotes the number
of particles in each node, and P is the number of threads in
each node. Note that P is identical among all nodes.

We parallelize the explicit pair force computation kernel
of ddcMD at the thread level using OpenMP. Two major
problems commonly associated with threading are: 1) race
condition among threads; and 2) thread-level load imbalance
[8]. The race condition occurs when multiple threads try to
update the force of the same particle concurrently. Several
techniques have been proposed to solve these problems:

• Duplicated pair-force computation—simple and
scalable, but doubles computation. Usually used in
GPGPU threading [16, 17].

• Spatial decomposition coloring [18]—scalable
without increasing computation, but can cause load
imbalance.

• Mutually exclusive dynamic scheduling [19]—robust
and suited for dynamic load balancing, but can incur
considerable overhead for context switching.

• Data privatization—no penalty on computation, but
with excessive O(NP) memory requirement and
associated reduction operation cost.

Figure 2. 2D schematic of a single computation unit λk. The shaded cells
Cj pointed by the arrows constitute the half neighbor cells, nn+(Ck).

We have designed an algorithm that combines a mutually
exclusive scheduler with a reduced memory data-
privatization scheme to address all of these issues. In
section III, we describe a traditional data-privatization
algorithm and its problems, followed by a discussion of our
solutions to these problems in subsections III-A and III-B.

III. DATA-PRIVATIZATION SCHEDULING ALGORITHM
A traditional data-privatization algorithm avoids write

conflicts by replicating the entire write-shared data structure
and allocating a private copy to each thread (Fig. 3). The
memory requirement for this redundant allocation scales as
O(NP). Each thread computes forces for each of its
computation units and stores the force values in its private
array instead of the global array. This allows each thread to
compute forces independently without a critical section.
After the force computation for each MD step is completed,
the private force arrays are reduced to obtain the global
forces. The reduction operation can be performed in
O(NlogP) time using a hypercube algorithm. Note that read
conflicts do not cause any problem in this context.

Figure 3. Schematic of a memory layout for a traditional data
privatization.

To reduce the redundant memory requirement, we have
developed a low-overhead approach that provides excellent
load balancing while imposing minimal interference on the
worker threads. Our algorithm utilizes a greedy scheduler to
distribute the workload before entering the pair
computation, i.e., parallel section. In this approach, the
scheduling cannot interfere with the worker threads since
the scheduling is already completed before the worker
threads are started. Because the schedule is recomputed
every MD step (or perhaps every few MD steps) there is
adequate flexibility to adapt load balancing to the changing
dynamics of the simulation.

The hybrid MPI/OpenMP parallelization of ddcMD is
implemented by introducing the thread scheduler into the
MPI-only ddcMD. Figure 4 shows the workflow of the
hybrid MPI/OpenMP code using the data-privatization
scheduler. The program repeats the following computational
phases: First, the master thread performs initialization and
internode communications using MPI; the scheduler
computes the scheduled workload for each thread; and the
worker threads execute the workloads in an OpenMP
parallel section.

Since the scheduling is performed frequently, the load-
balancing algorithm needs to be simple yet provide
sufficient load-balancing capability. Therefore, we have
adopted a greedy approach for the load-balancing scheduler,
which is discussed and analyzed in subsection III-A. In
subsection III-B, the load-balancing scheduler is further
enhanced by introducing the minimal memory-footprint
data-privatization scheme.

Figure 4. Schematic workflow of the hybrid MPI/OpenMP scheme. In
each MD step, internode MPI communications and thread scheduling are
performed by the master thread prior to the force computations, which are
computed by worker threads in an OpenMP parallel section.

A. Thread-Level Load-Balancing Algorithm Based on a
Greedy Algorithm
We implement thread-level load balancing based on a

simple greedy approach, i.e., iteratively assign a
computation unit to the least-loaded thread, until all
computation units are assigned.

Let Ti ⊆ Λ denote a mutually exclusive subset of
computation units assigned to the i-th thread, where

€

Ti =∅
0≤i<P

.
 (4)

The computation time spent on λk is denoted as τ(λk). Thus,
the computation time of each thread is

€

τ Ti() = τ λk()
λk∈ Ti

∑
.
 (5)

The algorithm initializes Ti to be empty, and loops over λk in
Λ. Each iteration selects the least-loaded thread Tmin =
argmin(τ(Ti)), and assigns λk to it. Figure 5 shows the
pseudo code of this algorithm.

Algorithm Greedy Load Balancing
1. for 0 ≤ i < P do
2.

€

Ti ←∅
3. end do
4. for each λk in Λ do
5.

€

Tmin ← argmin
0≤i<P

τ Ti()()

6.

€

Tmin ← Tmin ∪λk
7. end do

Figure 5. Greedy load-balancing algorithm.

The greedy algorithm is simple yet provides an excellent
load-balancing capability. As shown below, this approach
has a well-defined upper bound on the load imbalance. For a
perfectly load-balanced system, the computation time of
every thread is equal to the average computation time,

€

τ average =
1
P

τ Ti()
i=0

P−1

∑
.
 (6)

To quantify the load imbalance, we define a load-imbalance
factor γ as the difference between the runtime of the slowest
thread and the average runtime,

€

γ =
max τ Ti()() −τ average

τ average

=
max τ Ti()()
τ average

−1 .
 (7)

By definition, γ = 0 when the loads are perfectly balanced.
Considering

€

min τ Ti()() ≤ τ average , (8)

thus,

€

max τ Ti()() −τ average ≤ max τ Ti()() −min τ Ti()() . (9)

Substituting Eq. (9) into Eq. (7) yields

€

γ ≤
max τ Ti()() −min τ Ti()()

τ average . (10)

Eq. (10) shows that reducing the difference of the maximum
and minimum workloads minimizes the load-imbalance
factor.

In our greedy algorithm, the workload of Tmin is
increased by τ(λk) at each iteration. Therefore, the
maximum workload that can be increased is max(τ(λk)).
This procedure guarantees that the variance of the
workloads among all threads is limited by

€

max τ Ti()() −min τ Ti()() ≤ max τ λk()() . (11)

Applying the transitive relation to inequalities Eq. (9) and
Eq. (11), we obtain

€

max τ Ti()() −τ average ≤ max τ λk()() . (12)

Substituting Eq. (12) in Eq. (7) provides an upper limit for
the load-imbalance factor

€

γ ≤
max τ λk()()
τ average . (13)

Performance of this load-balance scheduling algorithm
depends critically on the knowledge of time spent on each

computation unit τ(λk). Since the runtime of the
computation units are unknown to the scheduler prior to the
actual computation, the scheduler has to accurately estimate
the workload of each computation unit. Due to the gradual
change of the particle positions between consecutive MD
steps, τ(λk) remains highly correlated between the
consecutive MD steps. Therefore, we use τ(λk) measured in
the previous MD step as an estimator of τ(λk). For the first
step as well as steps when the cell structure changes
significantly (e.g., redistribution of the domain centers), the
workload of cell τ(λk) is estimated by counting the number
of pairs in λk,

€

τ λk() ≈ n Ck() n C j()
Cj∈ nn+ Ck()
∑ , (14)

where n(Ck) refer to the number of particles in cell Ck.

B. Memory Locality-Aware Workload Distribution
Algorithm
As mentioned before, the memory requirement of the

data-privatization algorithm is O(NP). However, since only
a small subset of Λ is assigned to each thread it is not
strictly necessary to allocate a complete copy of the force
array on each thread. Therefore, we allocate only the
necessary portion of the global force array corresponding to
the computation units assigned to each thread as a private
force array. This idea is embodied in a simple three-step
algorithm (Fig. 6): First, the scheduler assigns computation
units to threads and then determines which subset of the
global data is required by each thread. Second, each thread
allocates its private memory as determined by the scheduler.
Finally, private force arrays from all threads are reduced
into the global force array.

Figure 6. Memory layout and three-step algorithm for memory locality-
aware scheduling algorithm.

To do this, we create a mapping table between the global
force-array index of each particle and its thread-array index
in a thread memory space. Fortunately, ddcMD sorts the
particle data based on the cell they reside in, and thus only
the mapping from the first global particle index of each cell
to the first local particle index is required. The local

ordering within each cell is identical in both the global and
private arrays.

It should be noted that assigning computation unit λk to
thread Ti requires memory allocation more than the memory
for the particles in Ck. Since each computation unit
computes the pair forces of particles in cell Ck and half of its
neighbor cells nn+(Ck) as shown in Fig. 2, the force data of
particles in nn+(Ck) need to be allocated as well. In order to
minimize the memory requirement of each thread, the
computation units assigned to it must be spatially
proximate, so that the union of their neighbor-cell sets has a
minimal size. For this purpose, it is essential to minimize
the surface-to-volume ratio of Ti.

To maintain a small surface-to-volume ratio when
assigning a new computation unit to each thread, we modify
the greedy scheduling algorithm introduced in section III-A.
The pseudo-code of this algorithm is given in Fig. 7. First,
we randomly assign a single computation unit to each
thread. Then, the iteration begins by selecting the least-
loaded thread Tmin. From the surrounding volume of Tmin,
we select the computation unit that has the minimum
distance to the centroid of Tmin, and add it to Tmin. The
algorithm repeats until all computation units are assigned. If
all of the surrounding computation units of Tmin are already
assigned, Tmin randomly chooses a new unassigned
computation unit as a new cluster’s initial seed and continue
to grow from that point.

Algorithm Memory Locality-Aware Load-Balancing
Scheduler
1.

€

i← 0
2. while i < P do
3. repeat
4.

€

λrnd ← random Λ()
5. until

€

λrnd ∉ T j <i()
6.

€

Ti ← λrnd
7.

€

i← i +1
8. end do
9. while

€

Ti ≠ Λ
0≤i<P
 do

10.

€

Tmin ← argmin
0≤i<P

τ Ti()()

11.

€

j*← argmin
Cj∈nn Tmin()

centroid Tmin() −C j()

12.

€

Tmin ← Tmin ∪λ j*
13. end do

Figure 7. Modified scheduling algorithm combining load balancing and
memory locality-aware algorithms.

Figure 8 shows a 2D example of memory locality-
aware and load-balanced data-privatization scheduling.
Figure 8(a) shows non-uniform particle distribution. Here,
we assume that the workload in each cell is proportional to
the number of particles in the cell. Figure 8(b) illustrates the
result of scheduling. Most computation units on the lower

left corner are assigned to T1, while the rest are assigned to
T2. The load-imbalance factor γ in this example is 0.0435.
 The memory requirement of this algorithm can be
analyzed as follows. The memory for each thread comes
from two sources: 1) memory for the actually assigned
computation units Mλ; and 2) memory for the surface cells
neighboring the assigned computation units Ms. The amount
of memory requirement for the first source is

€

Mλ =O N
P
⎛

⎝
⎜

⎞

⎠
⎟ , (15)

whereas that for the second source is

€

M s =O N
P
⎛

⎝
⎜

⎞

⎠
⎟
2/ 3⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ . (16)

Hence, the memory requirement for one thread is

€

Mλ +M s =O N
P

+
N
P
⎛

⎝
⎜

⎞

⎠
⎟
2/ 3⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ , (17)

and the memory footprint of P threads on a node is

€

P Mλ +M s() =O P N
P

+ P N
P
⎛

⎝
⎜

⎞

⎠
⎟
2/ 3⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

=O N + P1/ 3N 2/ 3()
. (18)

Thus, the asymptotic memory requirement for each node is
O(N+P1/3N2/3), which is much smaller than the O(NP)
memory requirement of the traditional data-privatization
algorithm.

Although this algorithm reduces the memory footprint
significantly, it poses a difficulty in utilizing the hypercube
reduction. This difficulty arises from the fact that the partial
private force arrays are not aligned with each other.
Nevertheless, the cost of linear reduction is reduced to
O(N+P1/3N2/3) as a consequence of the reduced memory
footprint. In fact, for a given P, the computation time of the
partial linear reduction could be less than that of the
hypercube reduction when N is large such that O(P1/3N2/3) <
O(NlogP).

Figure 8. 2D illustration of memory locality-aware algorithm. (a) Spatial
particle distribution where the normalized particle density is color-coded.
(b) The corresponding computation-unit assignment to two threads
originating at T1 and T2 cells.

IV. PERFORMANCE EVALUATION
In this section, we perform performance measurements

and analysis for the algorithm described in the previous
section. Section IV-A measures the load-imbalance factor of
our memory locality-aware scheduling. Section IV-B
measures the memory requirement reduction achieved by
our approach and confirms the O(N+P1/3N2/3) memory
requirement for each node. Section IV-C demonstrates that
the scheduling cost can be reduced without affecting the
quality of load balancing. Section IV-D compares the
performance of the hybrid MPI/OpenMP scheme with that
of the MPI-only scheme.

A. Thread-Level Load Balancing
We have performed a load-balancing test for the

scheduling algorithm on a dual six-core AMD Opteron 2.3
GHz with N = 8,192 (Fig. 9). The actual measurement of the
load-imbalance factor γ is plotted along with its estimator
introduced in section III-A and the theoretical bound given
by Eq. (13) as a function of P. The results show that γestimated
and γactual are close, and are below the theoretical bound.
Also, γtheoretical, γestimated and γactual are increasing functions of
P. This result indicates the severity of the load imbalance
for a highly multi-threaded environment and highlights the
importance of the fine-grain load balancing.

We have also observed that the performance fluctuates
slightly depending on the initial cell selection of the
memory locality-aware algorithm. While the random initial
cell selection tends to provide robust performance compared
to deterministic selection, it is possible to use some
optimization techniques (e.g., reinforcement learning) to
dynamically optimize the initial cell selection at runtime.
For more irregular applications, it is conceivable to combine
the light-overhead thread-level load balancing in this paper
with a high quality node-level load balancer such as a
hypergraph-based approach [20].

Figure 9. Load-imbalance factor γ as a function of P from theoretical
bound, scheduler estimation, and actual measurement.

B. Memory Footprint
To test the memory efficiency of the proposed method,

we perform a simulations on a four quad-core AMD
Opteron 2.3 GHz machine with the fixed number of
particles N = 8,192, 16,000, and 31,250. We measure the
memory allocation size for 100 MD steps while varying the
number of threads P from 1 to 16. Figure 10 shows the
average memory allocation size of the force array as a
function of the number of threads for the proposed
algorithm compared to that of a traditional data-privatization
algorithm. The results show that the memory requirement is
reduced by 65%, 72%, and 75% for 16 threads for N =
8,192, 16,000, and 31,250, respectively, compared with the
traditional O(NP) memory requirement. In Fig. 10, the
dashed curves show the reduction of memory requirement
per thread,

€

m = aP−1 + bP−2/ 3

. (19)

where the first term represents the memory scaling from
actual assigned cells and the second term represents scaling
from surface cells of each thread (Eq. 17). The regression
curves fit the measurements well, indicating that the
memory requirement is accurately modeled by
O(N+P1/3N2/3) per node or O(N/P+(N/P)2/3) per thread.

Figure 10. Average memory consumption for the private force arrays using
our memory-saving strategy compared to the conventional entire-allocation
method. Numbers in the legend denote the number of particles N.

We also measure the computation time spent for the
reduction of the private force arrays to obtain the global
force array. Figure 11 shows the reduction-operation time as
a function of the number of threads P for N = 8,192, 16,000,
and 31,250 particles. Here, dashed curves represent the
regression,

€

t = aP1/ 3 + b . (20)

The curves fit well in all cases. This validates our analysis
of the reduction-operation cost that it follows O(P1/3)
scaling.

Figure 11. Average reduction-operation time of the memory locality-aware
scheduling as a function of the number of threads. Numbers in the legend
denote N.

C. Scheduling Cost
Though our scheduling algorithm has successfully

reduced the memory footprint compared to the traditional
data-privatization threading, one might be concerned with
the cost of the schedule calculation at each MD step. To
quantify the computational overhead of the scheduling
algorithm, we have measured and analyzed the scheduling
costs. Figure 12 shows the measured scheduling costs when
the scheduling is performed every 1 and 15 steps for
N=8,192 and 16,000 varying the number of threads P from 1
to 12 on dual six-core AMD Opteron 2.3 GHz. The figure
shows that the scheduling cost increases linearly from 0.8%
for P = 1 to approximately 5% for P =12 when the
scheduling is performed at every MD step. The longer
scheduling interval of 15 MD steps shows a similar
behavior but with approximately 15-fold smaller scheduling
cost (less than 0.1 to 0.4%).

Figure 12. Computational overhead of our scheduling algorithm for N =
8,192 and 16,000 when the scheduling is performed every 1 and 15 steps.

We have found that skipping the scheduling for 15 MD

steps does not degrade the quality of load balancing. In Fig.
13, the load-imbalance factor γ is plotted as a function of P
when the scheduling is performed every 1 and 15 steps for
8,192-particle system. The result indicates that there is no
significant variation between two different scheduling
frequencies. This result can be explained by realizing that
the particle trajectories change slowly over the course of
simulation. Hence, the workload within each computation
unit is stable for some period of time. It is therefore not
necessary to execute the scheduling calculation at every MD
step. This makes the cost of scheduling negligible.

Figure 13. Load-imbalance factor as a function of P for the scheduling
period of 1 and 15 MD steps.

D. Strong-Scaling Performance
We have measured the performance of the combined

memory locality-aware and load-balancing algorithms.
Figure 14 shows the thread-level strong-scaling speedup up
to 16 threads on a four quad-core AMD Opteron 2.3 GHz
for N = 8,192. The algorithm achieves a speedup of 14.43
on 16 threads, i.e., the strong-scaling multi-threading
parallel efficiency is 0.90. As shown in section IV-B, the
combined algorithm reduces the memory consumption on
the force array up to 65% for N = 8,192, while still
maintaining an excellent strong scalability.

Figure 14. Thread-level strong scalability of the parallel section on a four
quad-core AMD Opteron 2.3 GHz. The problem size is fixed as N = 8,192
particles.

Next, we compare the strong-scaling performance of the
hybrid MPI/OpenMP and MPI-only schemes for large-scale
problems on BlueGene/P at the Lawrence Livermore
National Laboratory. One BlueGene/P node consists of four
PowerPC 450 850 MHz processors. The MPI-only
implementation treats each core as a separate task, while the
hybrid MPI/OpenMP implementation has one MPI task per
node, which spawns four worker threads for the force
computation. The test is performed on 512 BlueGene/P
nodes, which is equivalent to 2,048 MPI tasks in the MPI-
only case and 512×4 threads for hybrid MPI/OpenMP. The
problem size is fixed as 221,184 particles.

The test result in Fig. 15 shows that the speed of the
MPI-only implementation outperforms that of hybrid
MPI/OpenMP on 128 cores by a factor of 1.39. This result
is expected, since the performance of the MPI/OpenMP
code is limited by Amdahl’s law. Namely, only the pair
kernel is parallelized, while the rest of the program is
sequential in the thread level. This disadvantage of the
MPI/OpenMP code diminishes as the number of cores
increases from 256, 512, to 1,024. Eventually, the hybrid
MPI/OpenMP code performs better than the MPI-only code
on 2,048 cores. The main factors underlying this result are:
1) the surface-to-volume ratio of the MPI-only code is larger
than that of the hybrid MPI/OpenMP code; and 2) the
communication latency for each node of the MPI-only code
is four times larger than that of the hybrid MPI/OpenMP
code.

Figure 15. Total running time per MD step for a fixed problem size at N =
221,184 particles. The benchmark is performed on 32 to 512 BlueGene/P
nodes (4 cores/node).

To verify this hypothesis, we have further performed a
preliminary study on a massive strong-scaling comparison
of hybrid MPI/OpenMP and MPI-only schemes. We
increase the number of BlueGene/P nodes to 8,192 nodes
(32,768 cores). Figure 16 shows the running time of 0.84-
million particle system for the total number of cores ranging
from 1,024 to 32,768. The result indicates that the hybrid
scheme performs better when the core count is larger than
8,192. On the other hand, the MPI-only scheme gradually
stops gaining benefit from the increased number of cores
and become slower when using 32,768 cores. Note that the
crossover point of the two schemes in terms of the
granularity in Figs. 15 and 16 are similar at ~ 100
particles/core. This result confirms the assertion that the
MPI/OpenMP model (or similar hybrid schemes) will be
required to achieve better strong-scaling performance on
large-scale multicore architectures.

Figure 16. Total running time per MD steps for a fixed problem size at N =
843,750 particles on 1,024 – 32,768 Power PC 450 850 MHz cores.

V. CONCLUSIONS
We have demonstrated that our memory locality-aware

scheduling algorithm successfully overcomes the
disadvantages of the traditional data-privatization threading
with minimal overhead. The scheduling algorithm
guarantees a bounded load-imbalance factor while reducing
the memory requirement from O(NP) to O(N+P1/3N2/3). The
cost of scheduling can be eliminated without the loss of
load-balancing quality by reducing the scheduling
frequency. Also, benchmarks of the massively parallel MD
simulations suggest significant performance benefits of the
hybrid MPI/OpenMP scheme for fine-grained large-scale
strong-scaling applications.

ACKNOWLEDGMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-457414). The work at USC was partially supported
by DOE BES/EFRC/SciDAC/SciDAC-e and NSF
PetaApps/EMT/CRI.

REFERENCES
[1] J. C. Phillips, et al., "NAMD: Biomolecular simulations on

thousands of processors," in Proceedings of Supercomputing,
Los Alamitos, CA, 2002.

[2] F. H. Streitz, et al., "Simulating solidification in metals at high
pressure: The drive to petascale computing," SciDAC 2006:
Scientific Discovery Through Advanced Computing, vol. 46, pp.
254-267, 2006.

[3] K. J. Bowers, et al., "Zonal methods for the parallel execution
of range-limited N-body simulations," Journal of
Computational Physics, vol. 221, pp. 303-329, Jan 20 2007.

[4] B. Hess, et al., "GROMACS 4: Algorithms for highly efficient,
load-balanced, and scalable molecular simulation," Journal of
Chemical Theory and Computation, vol. 4, pp. 435-447, 2008.

[5] K. Nomura, et al., "A metascalable computing framework for
large spatiotemporal-scale atomistic simulations," in
Proceedings of the International Parallel and Distributed
Processing Symposium, IEEE, 2009.

[6] D. E. Shaw, et al., "Millisecond-scale molecular dynamics
simulations on Anton," in Proceedings of the Conference on

High Performance Computing Networking, Storage and
Analysis, Portland, Oregon, 2009.

[7] J. N. Glosli, et al., "Extending stability beyond CPU
millennium: a micron-scale atomistic simulation of Kelvin-
Helmholtz instability," in Proceedings of Supercomputing,
Reno, Nevada, 2007, pp. 1-11.

[8] S. R. Alam, et al., "Impact of multicores on large-scale
molecular dynamics simulations," in Proceedings of the
International Parallel and Distributed Processing Symposium,
Miami, Florida USA, 2008.

[9] L. Peng, et al., "A scalable hierarchical parallelization
framework for molecular dynamics simulation on multicore
clusters " in International Conference on Parallel and
Distributed Processing Techniques and Applications, Las
Vegas, Nevada, USA, 2009.

[10] M. J. Chorley, et al., "Hybrid message-passing and shared-
memory programming in a molecular dynamics application on
multicore clusters," International Journal of High Performance
Computing Applications, vol. 23, pp. 196-211, Aug 2009.

[11] C. Long, et al., "Dynamic load balancing on single- and multi-
GPU systems," in Proceedings of the International Parallel and
Distributed Processing Symposium, 2010, pp. 1-12.

[12] R. Hockney and J. Eastwood, Computer simulation using
particles. New York: McGraw-Hill, 1981.

[13] T. Darden, et al., "Particle mesh Ewald: An N log(N) method
for Ewald sums in large systems," Journal of Chemical Physics,
vol. 98, pp. 10089-10092, 1993.

[14] D. York and W. Yang, "The fast Fourier Poisson method for
calculating Ewald sums," Journal of Chemical Physics, vol.
101, pp. 3298-3300, 1994.

[15] J-L. Fattbert, et al., In preparation.
[16] A. Sunarso, et al., "GPU-accelerated molecular dynamics

simulation for study of liquid crystalline flows," Journal of
Computational Physics, vol. 229, pp. 5486-5497, 2010.

[17] J. Yang, et al., "GPU accelerated molecular dynamics
simulation of thermal conductivities," Journal of Computational
Physics, vol. 221, pp. 799-804, 2007.

[18] C. Hu, et al., "Efficient parallel implementation of molecular
dynamics with embedded atom method on multi-core
platforms," in Proceedings of the 2009 International
Conference on Parallel Processing Workshops, 2009.

[19] D. W. Holmes, et al., "An events based algorithm for
distributing concurrent tasks on multi-core architectures,"
Computer Physics Communications, vol. 181, pp. 341-354,
2010.

[20] U. V. Catalyurek, et al., "Hypergraph-based dynamic load
balancing for adaptive scientific computations," in Proceedings
of the International Parallel and Distributed Processing
Symposium, 2007, pp. 1-11.

